On Cyclical Cauchy Sequences of Cyclically Proximal Sets

J. Maria Felicit and A. Anthony Eldred

PG & Research Department of Mathematics, St. Joseph's College, Tiruchirappalli

1. Introduction and Preliminaries

In [9] Rafael introduced the notation called proximally complete pair of subsets of a metric space, which weakens the notion of *UC* property and cyclical completeness introduced by Karpagam [5] in the theory of Best proximity points. In [9] the authors also shown that every pair of non-empty closed convex subsets of a uniformly convex banach space (or boundedly compact subsets of a metric space) is proximally complete. In [8] the cyclical proximal property says that if there exists $x_i \in A_i$, for $1 \le i \le p$ such that $x_i = x_{i+p}$ for all $i = 1, 2, \dots, p$ whenever $||x_i - x_{i+1}|| = d(A_i, A_{i+1})$.

For a pair of subsets (A_i, A_{i+1}) , for $i = 0, 1, \dots p-1$, where $A_p = A_0$.

Let
$$A_{i+1}^0 = \{ y \in A_{i+1} : d(x, y) = d(A_i, A_{i+1}) \text{ for some } x \in A_i$$

and $d(y, z) = d(A_{i+1}, A_{i+2}) \text{ for some } z \in A_{i+2} \}$

Definition 1.1

Let A_0, A_1, \dots, A_{p-1} be a non-empty subsets of a metric space X.

A sequence $\mathscr{A}_{i} \xrightarrow{\mathfrak{a}}_{i=0}$ in $\bigcup_{i=0}^{p-1} A_{i}$, with

 $x_1 \in A_1, \dots x_{pn} \in A_p, x_{pn+1} \in A_1, \dots, x_{p(n+1)-1} \in A_{p-1}$

for $n \ge 0$, is said to be a cyclical Cauchy sequence iff for each pair (A_i, A_{i+1}) and any $\varepsilon > 0$ there exists an $n \ge \mathbb{N}$ such that

 $d(x_{pk_1}, x_{pk_2+1}) < d(A_i, A_{i+1}) + \varepsilon$ for $k_1, k_2 \ge N$.

Definition 1.2

The *p*-sets $A_0, A_1, ..., A_{p-1}$ of metric space is proximally complete iff for every cyclically Cauchy sequence $\mathbf{x}_n \stackrel{\mathbf{a}}{\underset{p=0}{\longrightarrow}} \in \bigcup_{i=0}^{p-1} A_i$, the sequence $\mathbf{x}_{pn}, \mathbf{x}_{pn+1}, \mathbf{x}_{p$

Definition 1.3

[6] Let (X, d) be a metric space and let A_1, A_2, \dots, A_p be non-empty subsets of X. If $T: \bigcup_{i=1}^p A_i \to \bigcup_{i=1}^p A_i$ is a *p*-cyclic non-expansive maping, then $d(A_i, A_{i+1}) = d(A_{i+1}, A_{i+2}) = \dots = d(A_1, A_2)$ for $i = 1, 2, \dots, p$.

Definition 1.4

[8] The non-empty subsets $A_1, A_2, ..., A_p$ of a metric space X said to satisfy cyclical proximal property if there exists $x_1 \in A_i$ for all $1 \le i \le p$ such that $x_i = x_{i+p}$ for all i = 1, 2, ..., p whenever $||x_i - x_{i+1}|| = d(A_i, A_{i+1})$.

Lemma 1.5

[1] Let A be a non-empty closed and convex subset and B a non-empty and closed subset of a uniformly convex Banach space. Let $\{x_n\}$ and $\{z_n\}$ be sequence in A and $\{y_n\}$ be a sequence in B satisfying.

- i) $||z_n y_n|| \rightarrow d(A, B);$
- ii) For every $\varepsilon > 0$ there exists $N_0 \varepsilon \mathbb{N}$ such that for all $m > n \ge N_0$, $||x_m - y_n|| \le d(A, B) + \varepsilon$. Then for every $\varepsilon > 0$, there exists N_1 such that $||x_m - z_n|| \le \varepsilon$ for all $m > n \ge N_1$.

Definition 1.6

[7] Let A and B be non-empty subsets of a metric space X. (A,B) is said to satisfy property UC iff whenever $\{x_n\}$ and $\{z_n\}$ are sequences in A and $\{y_n\}$ is a sequence in B such that $\lim_{n\to\infty} d(x_n, y_n) = d(A,B)$ and $\lim_{n\to\infty} d(z_n, y_n) = d(A,B)$, then $\lim_{n\to\infty} d(x_n, z_n) = 0$.

Lemma 1.7

Every cyclical Cauchy sequence is bounded.

Proof

Let $\mathscr{K}_i \underset{n=0}{\cong} be a cyclical Cauchy sequence in <math display="inline">\bigcup_{i=0}^{p-1} A_i$. Therefore, there exists $N \varepsilon \mathbb{N}$ such that

$$d(x_{pn}, x_{pN+1}) < d(A_i, A_{i+1}) + 1$$
, for all $n \ge \mathbb{N}$.

Therefore, $x_{pn} \in B(x_{pN+1}, r)$ for all $n \ge \mathbb{N}$, where

 $r = \max d(x_p, x_{pN+1}), d(x_{2p}, x_{pN+1}), \dots, d(x_{pN}, x_{pN+1}), d(A_i, A_{i+1}) + 1$

Then $d(x_{pn}, x_{pN+1}) \le r$ for $n \in \mathbb{N}$.

Which implies π_{pn} is bounded.

Similarly π_{pn+1} , π_{pn+2} , $\pi_{p(n+1)-1}$ are also bounded.

2. Main Results

Theorem 2.1

Let $(A_i, A_{i+1}]$ be a proximally complete pair in a metric space X. Therefore A_i^0 is non-empty iff there exists a cyclical Cauchy sequence in $\bigcup_{i=0}^{p-1} A_i$.

Proof

Let x_{p} be a cyclical cauchy sequence: then there exist x_{pn_k} , x_{pm_k+1} , x_{pi_k+2} , \ldots , $x_{p(j_{k+1})-1}$ convergent subsequences of x_{pn} , x_{pn+1} , x_{pn+2} , \ldots , $x_{p(n+1)-1}$ converging to $x_0 \in A_0, x_1 \in A_1, x_2 \in A_2, \ldots$, $x_{p-1} \in A_{p-1}$ respectively. Hence

$$d(A_0, A_1) \le d(x_0, x_1) = \lim_{k \to \infty} d(x_{pn_k, x_{pm_k+1}}) = d(A_0, A_1)$$

and

$$d(A_1, A_2) \le d(x_1, x_2) = \lim_{k \to \infty} d(x_{pm_k + 1, x_{pi_k + 2}}) = d(A_1, A_2)$$

Therefore $x_1 \in A_1^0$.

Similarly $x_i \in A_i^0$ for all i = 0, 1, ..., p-1.

Theorem 2.2

Let $A_0, A_1, ..., A_{p-1}$ be subsets of a metric space X. If (A_i, A_{i+1}) is proximally complete, then $A_i^0, i = 0, 1, ..., p-1$ are closed subsets of X.

Proof

Let $x_n^1 \in A_1$ such that $x_n^1 \to x \in X$, $x_n^2 \in A_2$,..., $x_n^p \in A_p$, $x_n^{p-1} \in A_{p-1}$ such that

$$d(x_n^1, x_n^2) = d(A_1, A_2), \ d(x_n^2, x_n^3) = d(A_2, A_3), \dots, \ d(x_n^{p-1}, x_n^p) = d(A_{p-1}, A_0)$$

For $n \in \mathbb{N}$,

$$y_n = \begin{cases} x_m^1, \text{ for } n = pm+1 \\ x_m^2, \text{ for } n = pm+2 \\ \vdots \\ x_m^p, \text{ for } n = pm \end{cases}$$

Then

$$d(y_{pn}, y_{pm+1}) = d(x_n^p, x_m^1)$$

$$\leq d(x_m^1, x) + d(x, x_n^1) + d(x_n^1, x_n^p)$$

which tends to $d(A_0, A_1)$ and

$$d(y_{pn+1}, y_{pm+2}) = d(x_n^1, x_m^2)$$

$$\leq d(x_n^1, x) + d(x, x_m^1) + d(x_m^1, x_m^2)$$

which tends to $d(A_1, A_2)$, as $m, n \rightarrow \infty$.

Hence \mathbf{x}_n is a cyclical Cauchy sequence. Since (A_i, A_{i+1}) is proximally complete, \mathbf{x}_n , \mathbf{x}_n , \mathbf{x}_n , \mathbf{x}_n , \mathbf{x}_n , \mathbf{x}_n , \mathbf{x}_n have convergent subsequences which converges to $x_1 \in A_1, \dots, x_{p-1} \in A_{p-1}, x_p \in A_p$ respectively.

Hence $x = x_1$, so $d(x_0, x) = d(A_0, A_1)$ and $d(x, x_2) = d(A_1, A_2)$ which implies A_1^0 is closed. Similarly A_i^0 for i = 0, 1, ..., p are closed.

Theorem 2.3

Any non empty, closed and convex pair (A_i, A_{i+1}) in a uniformly convex Banach space is proximally complete. Furthermore, for any cyclical Cauchy sequence $\{x_n\}$, sequences $\{x_{pn}\}, \{x_{pn+1}\}, \{x_{pn+2}\}, \dots, \{x_{p(n+1)-1}\}$ converges to $x_0, x_1, x_2, \dots, x_{p-1}$ respectively, with $d(x_0, x_1) = d(x_1, x_2) = d(x_2, x_3) = \dots$ $= d(x_{p-1}, x_p) = d(A_i, A_{i+1})$.

Proof

Let $\{x_n\}$ be a cyclical Cauchy sequence in $\bigcup_{i=0}^{p-1} A_i$. Suppose $\{x_{pn}\}$ is not a Cauchy sequence. Therefore, there exists $\varepsilon_0 > 0$ and subsequences $\{x_{pnk}\}$ and $\{x_{pmk}\}$ of $\{x_{pn}\}$ such that $d(x_{pnk}, x_{pmk}) \ge \varepsilon_0$ for all $k \in \mathbb{N}$.

One can also observe that

$$d(x_{pn_k}, x_{p_k+1}) \rightarrow d(A_0, A_1)$$
 and $d(x_{pm_k}, x_{p_k+1}) \rightarrow d(A_0, A_1)$ as $k \rightarrow \infty$.

Recalling Lemma 1.5, we reach the contradiction that there exist $N_1 \in \mathbb{N}$ such that $d(x_{pn_k}, x_{pm_k}) < \varepsilon_0$ for all $k \ge \mathbb{N}$.

Hence $\{x_{pn}\}$ converges to a point $x_0 \in A_0$.

Similarly
$$x_{pn+1} \to x_1 \in A_1, x_{pn+2} \to x_2 \in A_2, ..., x_{p(n+1)-1} \to x_{p-1} \in A_{p-1}$$

and that

$$d(x_0, x_1) = \lim_{n \to \infty} d(x_{pn}, x_{pn+1}) = d(A_0, A_1);$$

$$d(x_1, x_2) = \lim_{n \to \infty} d(x_{pn+1}, x_{pn+2}) = d(A_1, A_2);$$

$$\vdots$$

 $d(x_p, x_{p-1}) = \lim_{n \to \infty} d(x_{pn}, x_{p(n+1)-1}) = d(A_0, A_{p-1}).$

References

- [1] A. Anthony Eldred, P. Veeramani, Existence and convergence of best proximity points, *J. Math. Anal. Appl.* 323(2006), No. 2, 1001-1006.
- [2] Calogero Vetro, Best proximity points: Convergence and existence theorem for pcyclic mappings, *Nonlinear Analysis*, 73 (2010) 2283-2291.
- [3] C.Di Bari, T.Suzuki, C. Vetro, Best proximity points for cyclic Meir-Keeler contraction, *Nonlinear Analysis*, 69(2008) 3790 -3794.
- [4] Kirk, WA, Srinivasan, PS, Veeramani, P: Fixed points for mapping satisfying cyclical contractive condition. *Fixed Point Theory*. *Appl.* 13, 99-105 (2012).
- [5] S.Karpagam, S.Agrawal, Existence of best proximity point theorems of p-cyclic contrac- tions, *Fixed Point Theory Appl.* 2009(2009)Article ID 197308.
- [6] S.Karpagam, S.Agrawal, Best proximity point theorems for p-cyclic Meir -Keeler contrac- tions, *Fixed point theory Appl.* 2009(2009) Article ID 197308.
- [7] T.Suzuki, M. Kikkawa, and C. Vetro, The existence of the best proximity points in metric spaces with the property UC, *Nonlinear Analysis*. 71(2009), 2918- 2926.
- [8] Maria Felicit, A.Anthony Eldred, Best proximity points for cyclical contractive mappings, *Applied General Topology*. 16, no; 2(2015), 119-126.
- [9] Rafael Espinola. G. Sankara Raju Kosuru. P. Veeramani, Pythagorean Property and Best Proximity Point Theorems, *J OptimTheory Appl* (2015) 164:53-550.